
Anharmonic Quasiclassical Barrier Samplings in Trajectory Calculations and Their
Influence on the Computed Product Energy Distributions
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Harmonic and anharmonic quasiclassical barrier samplings were used in classical dynamics simulations to
evaluate product energy distributions (PEDs). The results obtained for the CH dissociation in the methanethiol
cation (CH3SH+ f CH2SH+ + H) show that the PEDs are changed under inclusion of anharmonicity in the
initial conditions. Both the vibrational energy content at the transition state and the energy in the transitional
modes are important to explain the differences found in the PEDs. Discrepancies between the PEDs obtained
for trajectories initiated at the barrier and those initiated at the reactant were found and explained on the basis
of dynamical phase space bottlenecks, which make the phase space density not uniform fort * 0.

Introduction

The analysis of product energy distributions (PEDs) is one
of the basic topics in the study of unimolecular reactions. Their
measurement is often more readily accomplished than the
measurement of the dissociation rate, and as a result, there exists
a considerable body of experimental information about PEDs.
From the theoretical side, PEDs can be calculated from statistical
or nonstatistical models.1 For reactions occurring with a potential
energy barrier, the statistical redistribution of the product
energies is often not possible even though the energy distribution
at the barrier may be statistical. In these cases, the products
rapidly dissociate with considerable translational energy and
having little chance to randomize the available energy. Conse-
quently, several nonstatistical models, for example, the impulsive
model2,3 and the transition state mapping model,4-7 or classical
trajectories are frequently used to obtain PEDs for reactions with
a (tight) transition state. Classical trajectories are problematic
because the inaccurate treatment of the zero-point energy (ZPE)
may lead to inaccurate PEDs. However, with an initiation of
the trajectories at the barrier with the quasiclassical model,8 the
unphysical ZPE leakage may not be a serious problem.

Recently, Hase and co-workers9,10 designed an algorithm to
obtain a quasiclassical microcanonical sampling of the vibra-
tional states at the barrier (here called QCBS). Their approach
gives the quasiclassical analogue of the quantum harmonic
RRKM distribution. This means that all harmonic vibrational
levels with energy less than the available energy (the total energy
minus the barrier height) have equal probability of selection.
Inclusion of anharmonicity could substantially modify both the
reaction coordinate and the vibrational state distributions at the
barrier and, consequently, the computed PEDs. Song et al.11

proposed a semiclassical model for calculating anharmonic
energy levels along the reaction path, which could be applied
to barrier sampling.

In the present paper, we analyze the effect of using anhar-
monic initial conditions on the computed PEDs by studying the
CH bond dissociation of the methanethiol cation (CH3SH+ f

CH2SH+ + H), which has a barrier height of 56 kcal/mol and
a reaction endothermicity of 54.3 kcal/mol.12 This system was
selected because we have recently developed an analytical
potential energy surface (PES) for it and obtained an anharmonic
correction factor for the reactant and transition state densities
of states.11 In this study, this anharmonic correction together
with the QCBS algorithm are used to construct various
anharmonic quasiclassical barrier sampling models. The PEDs
obtained with these anharmonic models are analyzed and
compared with those obtained with the harmonic QCBS one.
Finally, we also compared the PEDs obtained from trajectories
initiated at the barrier with those obtained from trajectories
initiated at the reactant phase space with an appropriate statistical
sampling.

Methods

A. Harmonic Quasiclassical Barrier Sampling (QCBS)
Model. The harmonic QCBS procedure9,10 is based on the
corresponding method for classical barrier sampling.13 In the
quasiclassical model, each harmonic vibrational level with
energy less than the available energyEav has equal probability
of being selected and, therefore, the reaction coordinate and
vibrational state distributions are in agreement with quantum
harmonic RRKM theory. Hereinafter, the total available energy
at the transition state (Eav) will be 169.4 kcal/mol with respect
to the transition state ZPE (or 171.5 with respect to the product
ZPE).

In this quasiclassical model, the initial conditions of each
trajectory are selected as follows. A normal modei is picked
up at random and assignedni quanta by using an appropriate
weighting. More precisely, the probability of assigningni quanta
to a normal mode is given by9,10

whereWtot is the total number of harmonic states with energy
less thanEav and Wni is the number of harmonic states with
energy less thanEav and with modei having ni quanta. Both
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Wni and Wtot were calculated by the Beyer-Swinehart algo-
rithm.14 Once ni quanta have been assigned to modei, the
remaining energy,Eav - Ei, is distributed among the other
modes in a similar manner. Hence, a second model is randomly
chosen and assignednl quanta such thatEl e Eav - Ei. The
probability of assigningnl quanta to this mode follows the above
equation, but in this case,Wtot is the total number of states
considering only the remaining modes with energy less than
Eav - Ei and accordingly forWni.

After all normal modes (m) have been assigned quanta (n1,
n2, ..., nm), the remaining energyEav - ∑i)1

m Ei is placed on the
reaction coordinate. Finally, the Cartesian coordinates and
momenta are obtained from the displacement of the normal
modes from the equilibrium at the transition state.15 This model
was used to prepare an ensemble of 10 000 trajectories at the
barrier.

The quantum harmonic distribution (QHD) probability of
vibrational levels is given by

whereF(E) is the transition state harmonic density of states at
energyE andW(Eav) is the total harmonic number of states with
energy less thanEav, which acts in eq 2 as a normalization factor.
Figure 1 shows the normalized vibrational state distribution
obtained for 10 000 points sampled with the QCBS procedure
as described above and the QHD (dashed line) obtained from
eq 2. Both curves show a very good agreement as expected.

B. Anharmonic Corrections. The QHD can be substantially
modified under inclusion of anharmonicity, as shown later. For
the CH bond dissociation in the methanethiol cation, we have
recently obtained an anharmonic correction factor for the density
and sum of states.12 This factor was calculated by fitting
anharmonic RRK models to microcanonical rate constants,
following previous work by Song and Hase.16 The model used
in ref 12 multiplies the harmonic RRK expression

by the classical anharmonic factor16

whereν, b, and bts (with ts standing for transition state) are
adjustable parameters,s is the number of vibrational degrees
of freedom, andE0 is the classical barrier height. The numerator
and denominator in eq 4 give the classical correction factor for
the transition state sum of states and for the reactant density of
states, respectively. It is important to stress the empirical
character of the anharmonic correction factor used here. This
correction factor is usually a reasonable approximation but is
not guaranteed to be adequate for every system.16 Using the
above equations to fit the microcanonical rate constants for the
CH3SH+ f CH2SH+ + H reaction, we obtained a value of 0.054
for bts,12 which can be used to determine the classical anhar-
monic density of states at the transition state as

Now, to obtain a quantum anharmonic distribution, we need a
quantum anharmonic correction factor, which can be evaluated
from the classical anharmonic one as17

where an appropriate fraction of the ZPEEzpeis subtracted from
the classical energyE, following the Whitten-Rabinovitch
approximation.18 The parametera is a function of energy and
is determined by equating the harmonic quantum and classical
densities of states, that is

wherea must be unity in the classical limit (high energies) and
zero for low energies. Particularly, we have chosena ) tanh-
(a0Ea1) and adjusteda0 and a1 until good agreement between
both members of eq 7 was achieved; the final values ofa0 and
a1 were 0.77 and 0.20, respectively. Then, the quantum
anharmonic density of states can be determined from the
classical one as17

Now, introducing the quantum anharmonic density of states and
the quantum anharmonic sum of statesWanh

q (Eav) ) ∫0
Eav Fanh

q (E)
dE into eq 2, one obtains the quantum anharmonic RRKM
distribution (QAD) of vibrational states depicted in Figure 2.
As seen in the figure, the QHD (dashed line) and QAD (solid
line) differ substantially. The reaction coordinate energy dis-
tribution (not shown for simplicity) is analogously modified by
inclusion of anharmonicity.

C. Anharmonic Sampling Models.To obtain a QAD from
the QCBS method, one may consider, as a first approximation,
a collection of uncoupled Morse oscillators for which the energy
of a given oscillator is

wheren is the quantum number,øe is the anharmonic constant,
and Ṽe is the vibrational wavenumber. Therefore, by using the
Stein-Rabinovitch algorithm19 to compute the density and sum
of states, a quantum Morse-oscillator RRKM distribution
(QMOD) of the vibrational levels can be obtained. Table 1
shows the vibrational wavenumbers for the transition state and

Figure 1. Normalized vibrational state distribution at the transition
state obtained with the QCBS algorithm. The QHD is also shown for
comparison. Note that the energies in this case are referred to the
transition state ZPE.

P(E) ) F(E)/W(Eav) (2)
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fanh
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the corresponding anharmonic constantsøe for the CS, SH, and
CH2 stretching normal modes, evaluated asøe ) hcṼe/4De (with
the dissociation energiesDe taken from ref 12). The QMOD
obtained with this simple model (not shown for simplicity)
differs strongly from the QAD obtained in the previous section.
To improve the agreement between the QMOD and the QAD,
the anharmonic constantøe of each normal mode was modified;
the third column of Table 1 collects the newøe values. However,
even in this case the QMOD distribution still differs substantially
from the QAD as shown in Figure 2. To a certain extent, the
disagreement between the QMOD and the QAD distributions
comes from the fact that the latter takes into account not only
the anharmonicity but also the vibrational coupling. However,
there may be a more fundamental problem with the QMOD.
Attempts have been made in the past by Haarhoff20 and Troe21

to evaluate anharmonic molecular sums and densities of states
with Morse oscillator-based Hamiltonians, and a major difficulty
arose from the fact that bend and torsions were not necessarily

well represented by Morse oscillators. Therefore, the same
limitation may apply here.

Even though the QMOD cannot reproduce the QAD, an
anharmonic QCBS model based on uncoupled Morse oscillators
was designed following the steps detailed previously for the
QCBS model, but in this case, eq 1 was evaluated by considering
the 11 uncoupled Morse oscillators described in Table 1 (column
3) and using the Stein-Rabinovitch algorithm.19 This modified
QCBS model was called here QCBS-A1 and when 10 000 points
were sampled in this way we obtained the normalized distribu-
tion depicted in Figure 2a.

We propose two other anharmonic samplings (QCBS-A2 and
QCBS-A3) designed from the harmonic QCBS scheme. Both
samplings, which comprise 10 000 sampling points, include a
subset of points selected with constraints in order to obtain an
anharmonic distribution of vibrational levels at the barrier. More
specifically, in the QCBS-A2 model, the first 7000 points were
selected with the standard QCBS procedure and the remaining
3000 points were chosen with the constraint that the root-mean-
square (rms) deviation between the normalized QCBS-A2
distribution and the QMOD decreased progressively as every
new point was considered. Therefore, both the QCBS-A2 and
QCBS-A1 models match the QMOD as shown in Figure 2
(panels a and b). On the other hand, in the QCBS-A3 model,
the last 5000 points were selected with a constraint to progres-
sively reduce the rms deviation between the normalized QCBS-
A3 distribution and the QAD (see Figure 2b). Basically, this
procedure implies to populate high-energy vibrational levels by
depleting low-energy states from the harmonic normalized
distribution.

Figure 3 shows the initial average normal mode energies
obtained in the four barrier samplings. As can be seen, the
QCBS, QCBS-A2, and QCBS-A3 ensembles predict a similar
behavior for the normal mode energy distribution: the normal
mode energies decrease as the vibrational wavenumber in-
creases. However, the normal mode energy partitioning for
QCBS-A1 is substantially different. Particularly, modes 9-11
(SH stretch and the two CH2 stretches) have more energy in
the QCBS-A1 model than in the others. This is easily understood
by the strong decrease in the vibrational energy of the SH (or
CH2) stretch by inclusion of anharmonicity for a given quantum
number, allowing more vibrational levels to be populated. By
contrast, the initial energy content for mode 1 (HCS bend) is
smaller for QCBS-A1.

D. Trajectory Computational Details. The trajectory cal-
culations, performed with the GenDyn code22 and using the
analytical PES described in ref 12, were initialized in five ways.

Figure 2. Normalized vibrational state distributions at the transition
state obtained for the (a) QCBS-A1 and (b) QCBS-A2 and QCBS-
A3 algorithms (depicted as histograms). The QAD, QHD, and QMOD
are shown for comparison in both panels. Note that the energies in
this case are referred to the transition state ZPE.

TABLE 1: Vibrational Wavenumbers and Anharmonic
Constants for the Transition State

øe

mode vibrational wavenumber from ref 12a QCBS-A1

1 327 (HCS bend) 0.003 058
2 362 (torsion) 0.005 525
3 812 (CSH bend) 0.009 852
4 994 (CH2/SH wagg) 0.013 078
5 1009 (CS stretch) 0.016 811 0.012 884
6 1256 (CH2 rock) 0.014 331
7 1336 (CH2 wagg) 0.014 970
8 1745 (CH2 scissors) 0.015 473
9 2552 (SH stretch) 0.022 520 0.039 969

10 3360 (CH2 stretch) 0.044 475 0.047 619
11 3486 (CH2 stretch) 0.046 143 0.047 619

a Calculated asøe ) hcṼ/4De with the frequencies and dissociation
energies taken from ref 12 (see text).

4810 J. Phys. Chem. A, Vol. 105, No. 20, 2001 Martı́nez-Núñez and Va´zquez



Four of them correspond to the QCBS, QCBS-A1, QCBS-A2,
and QCBS-A3 models as described above. The fifth is the
efficient microcanonical sampling (EMS)23,24with J ) 0, which
takes into account the anharmonicity and vibrational coupling
of the PES. For details of the EMS initial conditions the reader
is referred to our previous trajectory study.12 The energy for
the EMS-initialized trajectories was 220.4 kcal/mol above the
reactant ZPE, which corresponds to 169.4 kcal/mol at the
transition state. Hereinafter, the names EMS, QCBS, QCBS-
A1, QCBS-A2, and QCBS-A3 will be also used to name the
ensembles associated to the different samplings.

Batches of 10 000 trajectories were integrated for a maximum
of 5 ps or until dissociation occurred (more specifically, until
one of the CH interatomic distances exceeded 10 Å). When a
trajectory finished, a final product analysis was performed from
the atomic Cartesian coordinates and momenta.25,26

Results

Table 2 collects the average PEDs obtained in this work for
the QCBS models and Figure 4 shows the product translational
energy distributions obtained from the QCBS, QCBS-A1, and
QCBS-A3 ensembles. As seen from the figure and the table,
there are discrepancies between the results obtained from the
harmonic and anharmonic samplings, pointing out that anhar-
monicity may be important in barrier sampling initial conditions.
Particularly, the anharmonic models predict lower translational
energies and higher vibrational energies than the harmonic
QCBS. To a large extent, this is a result of the marked
differences between the average reaction coordinate energies
(and therefore between the average vibrational energies, too)
at the transition state, as shown in Table 3. In general, an

anharmonic correction to quasiclassical barrier sampling is
expected to become important at high total energies and for
reactions where there is a small potential energy release in the
exit channel. Both of these are the case for the reaction that is
being studied here. At low total energies, however, the harmonic
sampling model becomes more accurate. In addition, for
reactions with a large potential energy release, which may be

Figure 3. Average normal mode vibrational energies at the transition
state for the QCBS, QCBS-A1, QCBS-A2, and QCBS-A3 models.

TABLE 2: PEDsa (in kcal/mol) Obtained for the QCBS
Ensembles

ensemble

QCBS QCBS-A1 QCBS-A2 QCBS-A3

<Etrans> 33.9( 17.4 31.1( 16.2 32.5( 17.2 30.7( 16.5
<Evib> 128.7( 21.4 131.5( 20.2 130.2( 21.0 131.8( 20.6
<Erot> 8.9( 7.9 8.9( 7.7 8.8( 7.8 9.0( 8.0

a Energies are referred to the CH2SH+ ZPE (24.14 kcal/mol). Listed
uncertainties are the standard deviations of the distributions.

Figure 4. Normalized translational energy distributions obtained for
the (a and b) QCBS, (a) the QCBS-A1, and (b) the QCBS-A3
ensembles.

TABLE 3: Average Vibrational Normal Mode and Reaction
Coordinate Energiesa at the Transition State for the QCBS
Ensembles

average energies at the transition state

QCBS QCBS-A1 QCBS-A2 QCBS-A3

<Edis>b 30.6( 6.8 30.5( 6.5 30.8( 6.7 31.9( 6.7
<Evib>c 153.5( 14.5 156.5( 12.5 155.1( 14.1 158.1( 12.6
<Erc>d 15.9( 14.5 12.9( 12.5 14.3( 14.1 11.3( 12.6

a Energies are in kcal/mol and referred to the transition state ZPE.
Listed uncertainties are the standard deviations of the distributions.
b Average energy in disappearing modes 1 and 2.c Average of the total
vibrational energy.d Average reaction coordinate energy.
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larger than the excess energy at the barrier, this energy release
may dominate the product energy partitioning. As a result, the
anharmonic correction to the sampling may be unimportant. The
effect of anharmonicity on the PEDs has been studied for
aluminum cluster dissociation, a reaction without an exit-channel
barrier.27

The calculations predict that the difference between the
average vibrational energies obtained by the anharmonic and
harmonic models (<Evib>QCBS-Ax - <Evib>QCBS, with x ) 1,
2, or 3) is almost conserved on going from the transition state
to products, except for QCBS-A3, as illustrated in Figure 5.
The lack of correlation for the QCBS-A3 ensemble may be
explained by arguments based on the statistical adiabatic channel
model (SACM).1,21,28,29In this model, the reactive system is
assumed to remain in the same vibrational/rotational quantum
level as it evolves along the reaction path. If the vibrational/
rotational energy level spacings are similar at the barrier and
for the products, all of the barrier classical potential energy goes
to product translation. If the energy level spacings decrease in
going from the barrier to products, energy transfer to product
translation can be enhanced. In our case, two “transitional” or
“disappearing” modes (the HCS bend and the torsion) correlate
to product rotations. Because in these modes the vibrational
levels are more widely spaced than the product rotational levels,
a portion of the energy is expected to go to product translation.
As shown in Table 3, the initial energy in these modes is almost
the same for QCBS, QCBS-A1, and QCBS-A2. The corre-
sponding energy for QCBS-A3 is somewhat higher, particularly,
1.4 kcal/mol higher than that for QCBS. Therefore, one may
expect for QCBS-A3 an extra loss of total vibrational energy
in going from the transition state to products as compared with
the other ensembles (see Figure 5), and, concomitantly, a slight
increase in the product rotational energy.

We have also computed the PEDs for an ensemble with
anharmonic initial conditions at the reactant (EMS ensemble);
the results are shown in Table 4 (last column). As can be seen,
there are large discrepancies between the average PEDs obtained
for the EMS and QCBS ensembles. The PEDs calculated for
the EMS ensemble are in better agreement with the anharmonic

than with the harmonic PEDs (obtained from barrier samplings).
At first glance, one is tempted to suggest that this is a result of
including anharmonicity in the barrier sampling. However, as
concluded below, the better agreement with the anharmonic
PEDs is rather fortuitous. One has to take into account the fact
that the ZPE leakage may affect the EMS ensemble more
strongly, so that the translational energy for this ensemble is
expected to be higher than for the QCBS ensembles. This
contrasts with the results obtained in this study (28 kcal/mol
for EMS vs 31-34 kcal/mol for the QCBS ensembles). We
found similar “striking” results for the dissociation of the
propionyl radical30 and the HF elimination of fluorethene.31 As
suggested in our previous study,31 this unexpected trend may
be a result of intrinsic non-RRKM behavior in the EMS-
initialized trajectories. In other words, the EMS ensemble may
be no longer microcanonical fort * 0 because of the presence
of dynamical phase space bottlenecks, which keep the vibrational
energy trapped. As a consequence, the transition state vibrational
energy distribution may differ markedly from the statistical
(RRKM or QCBS) one. To illustrate the above statement, we
designed two new ensembles from the EMS one: EMS1, which
comprises the first 4000 trajectories that dissociate, and EMS2,
which comprises the first 7000. As shown in Figure 6, the
translational energy distributions shift to lower energies as one
goes from EMS1 to EMS. The EMS ensemble contains more
phase space points associated to intramolecular bottlenecks than
does the EMS1 ensemble. Consequently, the resulting vibra-
tional energy content in the CH2SH+ product is larger because
for more trajectories the energy remains trapped into a small
subset of modes. One would expect that in the limitt f 0 the
PEDs obtained from the EMS ensemble will compare better
with the QCBS results. However, there are still severe discrep-

Figure 5. Differences (in kcal/mol) between the average vibrational
energies for QCBS-Ax (x ) 1 open circle,x ) 2 solid circle, andx )
3 triangle) and QCBS, evaluated at the transition state (x axis) and at
the product (y axis).

TABLE 4: PEDsa (in kcal/mol) Obtained for the EMS
Ensembles

ensemble

EMS1 EMS2 EMS

<Etrans> 34.2 30.3 27.8
<Evib> 132.6 136.6 139.0
<Erot> 4.7 4.6 4.7

a Energies are referred to the CH2SH+ ZPE (24.14 kcal/mol).

Figure 6. Normalized translational energy distributions obtained for
the EMS, EMS2, and EMS1 ensembles.
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ancies, mainly for the rotational energy content of CH2SH+,
which is approximately twice for the QCBS ensemble. To a
large extent, these discrepancies are a result of the classical
nature of the EMS model. In other words, the vibrational and
reaction coordinate energy distributions in the EMS ensemble
at the transition state fort ≈ 0 follows the classical but not the
quantum vibrational distributions (imposed in the QCBS
models). Therefore, a more rigorous comparison (between results
of trajectories initiated in the reactant region with EMS and
those of trajectories initiated at the barrier) would involve the
use of the classical barrier sampling at the transition state rather
than the quasiclassical barrier sampling.

Concluding Remarks

In the present work, the effects of including anharmonicity
in barrier sampling initial conditions were analyzed. For this
purpose, the PEDs obtained for the CH bond cleavage in the
methanethiol cation were compared for various harmonic and
anharmonic models. One anharmonic model is based on a
collection of uncoupled Morse oscillators, and in the others,
the vibrational level distributions at the barrier are artificially
constructed from the harmonic QCBS model. Anharmonicity
in the initial conditions alters the reaction coordinate energy
and vibrational state distributions and, consequently, the PEDs.
The energy content in two transitional modes (HCS bend and
torsion) is found to be almost the same for all of the QCBS
models, except for QCBS-A3. This explains that for this
anharmonic model there is no correlation between the average
vibrational energy at the barrier and that at the products.

The comparison between the PEDs obtained from barrier
samplings and those initiated with the EMS algorithm shows
that large deviations arise from the inherent non-RRKM
behavior of the system at the selected energy.

Finally, we conclude that for systems with high anharmonicity
(e.g., H-C-C, Al3, Ar14, HCN, H2CO, and H-CtC-H [ref
1, and references therein]) one may expect substantial discrep-
ancies between the PEDs obtained from harmonic and anhar-
monic excitation schemes. By knowing in detail the anharmo-
nicity of the transition state vibrational levels, however, one
can calculate more realistic PEDs from one of the QCBS models
proposed here and therefore make a more detailed comparison
with the experiment (if available).

Acknowledgment. We are pleased to acknowledge financial
support from MEC (BQU2000-0462). We also thank “Centro

de Supercomputacio´n de Galicia” CESGA for the use of their
computational devices.

References and Notes

(1) Baer, T.; Hase, W. L.Unimolecular Reaction Dynamics: Theory
and Experiments; Oxford University Press: New York, 1996.

(2) Holdy, K. E.; Klotz, L. C.; Wilson, K. R.J. Chem. Phys.1970, 52,
4588.

(3) Busch, G. E.; Wilson, K. R.;J. Chem. Phys.1972, 56, 3626.
(4) Qian, C. X. W.; Ogai, A.; Iwata, L.; Reisler, H.J. Chem. Phys.

1990, 92, 4296.
(5) Ogai, A.; Brandon, J.; Reisler, H.; Suter, H. U.; Huber, J. R.; von

Dirke, M.; Schinke, R.;J. Chem. Phys.1992, 96, 6643.
(6) Solter, D.; Werner, H. J.; von Dirke, M.; Untch, A.; Vegiri, A.;

Schinke, R.J. Chem. Phys.1992, 97, 3357.
(7) Reisler, H.; Keller, H. M.; Schinke, R.Comments At. Mol. Phys.

1994, 30, 191.
(8) Thrular, D. G.; Muckerman, J. T.Atom-Molecule Collision Theory;

Bernstein, R. B., Ed.; Plenum Press: New York, 1979; pp. 505-566.
(9) Doubleday, C., Jr.; Bolton, K.; Peslherbe, G. H.; Hase, W. L.J.

Am. Chem. Soc.1996, 118, 9922.
(10) Bolton, K.; Hase, W. L.; Doubleday, C., Jr.Ber. Bunsen-Ges. Phys.

Chem.1997, 3, 414.
(11) Song, K.; Peslherbe, G. H.; Hase, W. L.; Dobbyn, A. J.; Stumpf,

M.; Schinke, R.J. Chem. Phys.1995, 103, 8891.
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